Product Description

SWC Series-Medium-Duty Designs Cardan shaft

Designs

Data and Sizes of SWC Series Universal Joint Couplings

Type Design
Data
Item
SWC160 SWC180 SWC200 SWC225 SWC250 SWC265 SWC285 SWC315 SWC350 SWC390 SWC440 SWC490 SWC550 SWC620
A L 740 800 900 1000 1060 1120 1270 1390 1520 1530 1690 1850 2060 2280
LV 100 100 120 140 140 140 140 140 150 170 190 190 240 250
M(kg) 65 83 115 152 219 260 311 432 610 804 1122 1468 2154 2830
B L 480 530 590 640 730 790 840 930 100 1571 1130 1340 1400 1520
M(kg) 44 60 85 110 160 180 226 320 440 590 820 1090 1560 2100
C L 380 420 480 500 560 600 640 720 782 860 1040 1080 1220 1360
M(kg) 35 48 66 90 130 160 189 270 355 510 780 970 1330 1865
D L 520 580 620 690 760 810 860 970 1030 1120 1230 1360 1550 1720
M(kg) 48 65 90 120 173 220 250 355 485 665 920 1240 1765 2390
E L 800 850 940 1050 1120 1180 1320 1440 1550 1710 1880 2050 2310 2540
LV 100 100 120 140 140 140 140 140 150 170 190 190 240 250
M(kg) 70 92 126 165 238 280 340 472 660 886 1230 1625 2368 3135
  Tn(kN·m) 16 22.4 31.5 40 63 80 90 125 180 250 355 500 710 1000
  TF(kN·m) 8 11.2 16 20 31.5 40 45 63 90 125 180 250 355 500
  Β(°) 15 15 15 15 15 15 15 15 15 15 15 15 15 15
  D 160 180 200 225 250 265 285 315 350 390 440 490 550 620
  Df 160 180 200 225 250 265 285 315 350 3690 440 490 550 620
  D1 137 155 170 196 218 233 245 280 310 345 390 435 492 555
  D2(H9) 100 105 120 135 150 160 170 185 210 235 255 275 320 380
  D3 108 114 140 159 168 180 194 219 245 273 299 325 402 426
  Lm 95 105 110 125 140 150 160 180 195 215 260 270 305 340
  K 16 17 18 20 25 25 27 32 35 40 42 47 50 55
  T 4 5 5 5 6 6 7 8 8 8 10 12 12 12
  N 8 8 8 8 8 8 8 10 10 10 16 16 16 16
  D 15 17 17 17 19 19 21 23 23 25 28 31 31 38
  B 20 24 32 32 40 40 40 40 50 70 80 90 100 100
  G 6.0 7.0 9.0 9.0 12.5 12.5 12.5 15.0 16.0 18.0 20.0 22.5 22.5 25
  MI(Kg) 2.57 3 3.85 3.85 5.17 6 6.75 8.25 10.6 13 18.50 23.75 29.12 38.08
  Size M14 M16 M16 M16 M18 M18 M20 M22 M22 M24 M27 M30 M30 M36
  Tightening torque(Nm) 180 270 270 270 372 372 526 710 710 906 1340 1820 1820 3170

1. Notations: 
L=Standard length, or compressed length for designs with length compensation; 
LV=Length compensation; 
M=Weight; 
Tn=Nominal torque(Yield torque 50% over Tn); 
TF=Fatigue torque, I. E. Permissible torque as determined according to the fatigue strength
Under reversing loads; 
β=Maximum deflection angle; 
MI=weight per 100mm tube
2. Millimeters are used as measurement units except where noted; 
3. Please consult us for customizations regarding length, length compensation and
Flange connections. 
(DIN or SAT etc. )

Material: Alloy Steel
Load: Drive Shaft
Stiffness & Flexibility: Stiffness / Rigid Axle
Journal Diameter Dimensional Accuracy: IT6-IT9
Axis Shape: Straight Shaft
Shaft Shape: Hollow Axis
Customization:
Available

|

Customized Request

gearbox

What Is a Coupling?

A coupling is a mechanical device that links two shafts together and transmits power. Its purpose is to join rotating equipment while permitting a small amount of misalignment or end movement. Couplings come in a variety of different types and are used in a variety of applications. They can be used in hydraulics, pneumatics, and many other industries.

Types

Coupling is a term used to describe a relationship between different modules. When a module depends on another, it can have different types of coupling. Common coupling occurs when modules share certain overall constraints. When this type of coupling occurs, any changes to the common constraint will also affect the other modules. Common coupling has its advantages and disadvantages. It is difficult to maintain and provides less control over the modules than other types of coupling.
There are many types of coupling, including meshing tooth couplings, pin and bush couplings, and spline couplings. It is important to choose the right coupling type for your specific application to get maximum uptime and long-term reliability. Listed below are the differences between these coupling types.
Rigid couplings have no flexibility, and require good alignment of the shafts and support bearings. They are often used in applications where high torque is required, such as in push-pull machines. These couplings are also useful in applications where the shafts are firmly attached to one another.
Another type of coupling is the split muff coupling. This type is made of cast iron and has two threaded holes. The coupling halves are attached with bolts or studs.
gearbox

Applications

The coupling function is an incredibly versatile mathematical tool that can be used in many different scientific domains. These applications range from physics and mathematics to biology, chemistry, cardio-respiratory physiology, climate science, and electrical engineering. The coupling function can also help to predict the transition from one state to another, as well as describing the functional contributions of subsystems in the system. In some cases, it can even be used to reveal the mechanisms that underlie the functionality of interactions.
The coupling selection process begins with considering the intended use of the coupling. The application parameters must be determined, as well as the operating conditions. For example, if the coupling is required to be used for power transmission, the design engineer should consider how easily the coupling can be installed and serviced. This step is vital because improper installation can result in a more severe misalignment than is specified. Additionally, the coupling must be inspected regularly to ensure that the design parameters remain consistent and that no detrimental factors develop.
Choosing the right coupling for your application is an important process, but it need not be difficult. To find the right coupling, you must consider the type of machine and environment, as well as the torque, rpm, and inertia of the system. By answering these questions, you will be able to select the best coupling for your specific application.
gearbox

Problems

A coupling is a device that connects two rotating shafts to transfer torque and rotary motion. To achieve optimal performance, a coupling must be designed for the application requirements it serves. These requirements include service, environmental, and use parameters. Otherwise, it can prematurely fail, causing inconvenience and financial loss.
In order to prevent premature failure, couplings should be properly installed and maintained. A good practice is to refer to the specifications provided by the manufacturer. Moreover, it is important to perform periodic tests to evaluate the effectiveness of the coupling. The testing of couplings should be performed by qualified personnel.
China manufacturer China Leading Universal Couplings of SWC Cardan Shaft   coupling beamChina manufacturer China Leading Universal Couplings of SWC Cardan Shaft   coupling beam
editor by CX 2023-08-02