Product Description

SC Transmission Roller Chain Coupling KC Coupling KC 5018

The products are made of high quality alloy steel production. The plates are punched and squeezed bores by precision technology. The pin, bush, roller are machined by high-efficiency automatic equipment and automatic grinding equipment, then through heat treatment of carburization, carbon and nitrogen protection mesh belt furnace, surface blasting process etc. Assembled precision by Internal hole position, spin riveted by pressure to ensure the performance of the entire chain.

The chain coupling consists of a shaft coupling assembled from 2 rows of roller chain and 2 sprockets which engage them.
The chain ends can be simply connected or dismantled.
The original KANA structure is such that the case has been split into 2 perpendicularly to the shaft, and the cases 3012 to 8571 have a V-shaped groove on both sides with an O-ring inserted to prevent oil leaks.

Product Description

Availability:

 

* Standard roller chain
* OEM roller chain

 

High Performance:
√ Strong Ultimate tensile strength
√ Perfect surface treatment
√ Durable,Flexible
 

 

Quality Assurance:
ISO9001: 2015 and GB/T24001-2016 / ISO14001: 2015.

√Corrosion resistance
√Durable, Robust and Reliable
√Bad condition resistance
√Lower weight–high speed
 

 

Application industries:
√Manufacturing
√Agriculture
√Building Material
√Oil and Gas

√Technology and Science

Package:
Plastic bag+Neutral box +Plywood box

 

Adapted to:
* roller chains based on the requirements of ANSI B29.1
* Roller chain components are shot peened for greater fatigue resistance
* available with single strand roller chain,double strand roller chain,triple strand roller chain,four strand roller chain
* material used for roller chain 40mn
* heat treatment and special surface treatments are available on request

 

Product Parameters

IZE BORE Pilot A d O L I S B C BOLT TORQUE ARM(Nm) Max (rpm) (kg.cm2) WEIGHT
(kg)
3012 12-16 12 69 25 45 64.8 29.8 5.2 63 10.2 6M 190 5000 3.7 0.4
4012 12-22 12 77 33 62 79.4 36 7.4 72 14.4 6M 249 4800 5.5 0.8
4014 12-28 12 84 43 69 79.4 36 7.4 75 14.4 6M 329 4800 9.7 1.1
4016 14-32 14 92 48 77 87.4 40 7.4 75 14.4 6M 429 4800 14.4 1.4
5014 15-35 14 101 53 86 99.7 45 9.7 85 18.1 8M 620 3600 28 2.2
5016 16-40 16 111 60 93 99.7 45 9.7 85 18.1 8M 791 3600 37 2.7
5018 16-45 16 122 70 106 99.7 45 9.7 85 18.1 8M 979 3000 56.3 3.8
6018 20-56 20 142 85 127 123.5 56 11.5 105 22.8 10M 1810 2500 137.3 6.2
6571 20-60 20 158 98 139 123.5 56 11.5 105 22.8 10M 2210 2500 210.2 7.8
6571 20-71 20 168 110 151 123.5 56 11.5 117 22.8 10M 2610 2500 295 10.4
8018 20-80 20 190 110 169 141.2 63 15.2 129 29.3 12M 3920 2000 520 12.7
8571 20-90 20 210 121 185 145.2 65 15.2 137 29.3 12M 4800 2000 812.4 16
8571 20-100 20 226 140 202 157.2 71 15.2 137 29.3 12M 5640 1800 1110 20.2
1571 25-110 25 281 160 233 178.8 80 18.8 153 35.8 12M 8400 1800 2440 33
12018 35-125 35 307 170 256 202.7 90 22.7 181 45.4 12M 12700 1500 3940 47
12571 35-140 35 357 210 304 222.7 100 22.7 181 45.5 12M 18300 1250 7810 72
16018 63-160 35 375 228 340 254.1 112 30.1 240 58.5 16M 26400 1100 14530 108
16571 80-200 70 440 279 405 310.1 140 30.1 245 58.5 16M 37100 1000 32220 187
20018 82-205 75 465 289 425 437.5 200 37.5 285 71.6 20M 54100 800 50980 286
20571 100-255 90 545 263 506 477.5 220 37.5 300 71.6 20M 77800 600 111100 440
24571 120-310 110 650 448 607 650 302.5 45 340 87.8 20M 137000 600 310000 869
24026 150-360 140 745 526 704 700 327.5 45 350 87.8 20M 186000 500 598500 1260

The biggest characteristic is that the chains can be customized in different standard and materials according to your requirements. Made from the steel and the up-to-date skills as well as precision procedures, the high quality roller chain can withstand strong pressure and high temperature.

Company Profile

FAQ

Shipping

chain coupling

Can chain couplings accommodate axial misalignment?

Chain couplings are primarily designed to accommodate angular misalignment between the connected shafts. However, they have limited ability to handle axial misalignment, which refers to the situation where the two shafts are not perfectly aligned along their common axis.

Unlike some other types of couplings, such as flexible beam or disc couplings, chain couplings are not specifically designed to handle significant axial misalignment. The primary function of a chain coupling is to transmit torque between the shafts while allowing for some degree of angular displacement.

While chain couplings can tolerate a small amount of axial misalignment, excessive axial displacement can lead to various issues. It can cause increased stress on the coupling components, such as the roller chain, sprockets, and connecting pins, leading to accelerated wear and potential failure. Additionally, excessive axial misalignment can result in decreased power transmission efficiency and increased vibration and noise during operation.

If significant axial misalignment is anticipated in an application, it is generally recommended to consider alternative coupling options that are specifically designed to handle axial misalignment, such as double-flex or flexible beam couplings. These couplings have greater flexibility and can better accommodate axial displacement without compromising performance and reliability.

It is important to consult the manufacturer’s specifications and guidelines for the specific chain coupling being used to understand its limitations regarding axial misalignment. If axial misalignment is unavoidable, it may be necessary to implement additional measures, such as shaft guides or spacers, to minimize the impact of misalignment on the chain coupling and the connected machinery or equipment.

In summary, while chain couplings can tolerate a certain degree of axial misalignment, their primary function is to accommodate angular misalignment. Excessive axial misalignment should be avoided, and alternative coupling options should be considered if significant axial displacement is expected in an application.

chain coupling

Can chain couplings accommodate angular misalignment?

Yes, chain couplings are designed to accommodate a certain degree of angular misalignment between the connected shafts. Angular misalignment refers to the situation where the axes of the two shafts are not perfectly aligned and form an angle with each other.

Chain couplings are flexible in nature, and their design allows for some degree of angular displacement. The flexibility is primarily provided by the roller chain, which can bend and adjust to a certain extent to accommodate the misalignment. This flexibility helps to reduce the stress on the coupling components and allows for smoother operation even in the presence of angular misalignment.

However, it is important to note that chain couplings have limitations in terms of angular misalignment. Excessive angular misalignment beyond the specified limits can lead to increased stress, accelerated wear, and potential coupling failure. The manufacturer’s specifications and guidelines should be followed to ensure that the angular misalignment remains within the acceptable range for the specific chain coupling being used.

Regular inspection and maintenance of the chain coupling are also essential to identify and address any misalignment issues. If significant angular misalignment is detected, corrective measures should be taken, such as realigning the shafts or considering alternative coupling options that are better suited for the specific misalignment requirements.

It is worth mentioning that chain couplings are more tolerant of angular misalignment compared to some other types of couplings, such as rigid or gear couplings. However, it is still important to strive for proper alignment during installation and minimize any excessive misalignment to ensure optimal performance, reliability, and longevity of the chain coupling and the connected machinery or equipment.

chain coupling

How to select the right chain coupling for a specific application?

Choosing the appropriate chain coupling for a specific application involves considering various factors to ensure optimal performance and reliable power transmission. Here are some key steps to guide you in the selection process:

  1. Identify Application Requirements: Begin by understanding the specific requirements of the application. Consider factors such as the torque load, speed, misalignment conditions (angular, parallel, axial), and environmental conditions (temperature, moisture, presence of corrosive substances).

  2. Determine Torque and Speed Requirements: Calculate or estimate the torque and speed requirements of the application. This information is crucial in selecting a chain coupling that can handle the transmitted torque and operate effectively at the required speed range.

  3. Evaluate Misalignment Compensation: Assess the expected misalignment conditions in the application. Determine the magnitude of angular, parallel, and axial misalignments that the chain coupling needs to tolerate. This will help in selecting a coupling design that can accommodate the anticipated misalignment without compromising performance or causing excessive stress on the machinery.

  4. Consider Space Limitations: Evaluate the available space for the chain coupling. Measure the shaft-to-shaft distance and ensure that the selected coupling can fit within the available space without interference with other components or structures.

  5. Assess Environmental Factors: Take into account the environmental conditions in which the chain coupling will operate. Consider factors such as temperature extremes, humidity, presence of dust or debris, and exposure to corrosive substances. Choose a chain coupling that is designed to withstand these conditions and is made from materials that offer adequate corrosion resistance.

  6. Consult Manufacturer Specifications: Review the specifications and technical information provided by reputable chain coupling manufacturers. Pay attention to factors such as torque ratings, speed limits, misalignment capabilities, material compatibility, and recommended maintenance practices.

  7. Consider Maintenance Requirements: Evaluate the maintenance requirements of the chain coupling. Assess factors such as lubrication needs, ease of inspection, and adjustment procedures. Choose a coupling that aligns with the maintenance capabilities and resources available in your application.

  8. Seek Expert Advice if Needed: If you are uncertain about the selection process or have specific application requirements that need expert guidance, consult with knowledgeable engineers or technical representatives from the coupling manufacturer. They can provide valuable insights and recommendations based on their expertise and experience.

By following these steps and considering the specific application requirements, you can select the right chain coupling that meets the torque, speed, misalignment, space, and environmental demands of your application. Proper selection will ensure efficient power transmission, reliable operation, and extended lifespan of the chain coupling.

China factory Chain Coupling - Set-Kc5018  China factory Chain Coupling - Set-Kc5018
editor by CX 2023-08-10